Variance Estimation for Bayesian Dynamic Linear Models: Inference for Multivariate State Space Models - Kostas Triantafyllopoulos - Books - LAP LAMBERT Academic Publishing - 9783843370639 - November 3, 2010
In case cover and title do not match, the title is correct

Variance Estimation for Bayesian Dynamic Linear Models: Inference for Multivariate State Space Models

Price
A$ 97.49
excl. VAT

Ordered from remote warehouse

Expected delivery Jan 12 - 22, 2026
Christmas presents can be returned until 31 January
Add to your iMusic wish list

Time series modelling and in particular multivariate time series have received considerable attention in the literature over the past 20 years. Time series data are met in almost all subject areas, such as in economics, engineering, medicine and genetics, to name but a few. One of the key problems of multivariate time series analysis is the estimation of the covariance matrix of the data, as this holds important information of the co-evolution and correlation of the component time series data of interest. The aim of this book is to provide an account of the recent developments on this subject area and subsequently to develop methodology for tackling the problem of variance estimation in time series. The book introduces the basic modelling framework for state space time series models and then it provides estimation algorithms, within the Bayesian paradigm, for several classes of models. The book is aimed at both masters/Ph. D. students in a numerate discipline (such as statistics, mathematics, economics, engineering, computer science, and physics) and postdoctoral researchers interested in time series methods.

Media Books     Paperback Book   (Book with soft cover and glued back)
Released November 3, 2010
ISBN13 9783843370639
Publishers LAP LAMBERT Academic Publishing
Pages 196
Dimensions 226 × 11 × 150 mm   ·   310 g
Language German  

More by Kostas Triantafyllopoulos

Show all